A Comparison between Submucosal Connective Tissue Palatal Flap and Conventional Pedicle Palatal Flap for the Closure of Oroantral Fistulae

by Dr. Feras Yabroudi

Abstract

Background and Aim: Oroantral fistula (OAF) is a common complication of dental extraction and/or other oro-facial surgeries. Many surgical procedures have been used for the treatment of oroantral fistula, and it is believed that long term successful closure of oroantral fistula depends on the technique used, the size and the location of the defect. The aim of this study is to evaluate the success of the submucosal connective tissue palatal flap technique compared to the conventional pedicled palatal flap technique in the closure of oroantral fistula.

Materials and Methods: Ten patients suffering from oroantral fistula were recruited in the study, and they were divided into two groups. The first group was treated with the conventional palatal flap technique, and the second group was treated with the submucosal connective tissue flap technique. Suitable post-operative care and observation in both groups were achieved.

Results: It has been shown that all fistulae were closed successfully in both groups. There was no discomfort and no burning sensation in the second group. They all showed routinely healthy healing. Interestingly, patients in the second group needed fewer amounts of post-operative analgesics than in the first group.

Conclusion: Both types of flap techniques provided sufficient and successful closure of oroantral fistula. However, submucosal connective tissue palatal flap seems to be preferable for palatal fistula closure because it overcomes the disadvantages of the full thickness palatal flap. Compared with the conventional palatal flap, submucosal connective tissue palatal flap technique may appear to be more difficult in terms of flap manipulation. The surgical experience plays an important role at this level.

Key words: oroantral fistula, palatal flap, tooth extraction

Introduction

Oroantral fistula (OAF) is the communication between the maxillary sinus cavity and the oral cavity through a perforation in the sinus wall. The term oroantral communication comprises two pathological conditions, the acute oroantral perforation and the chronic communication “fistula”1. Oroantral communication and subsequent formation of OAF is a common complication of dental extraction. Owing to its anatomical location and intimate relationship with the teeth, the maxillary sinus occupies an important place in oral surgery. From a small cavity at birth, the maxillary sinus starts to enlarge during the third month of fetal life and usually reaches maximum development around the eighteenth year. Its volume is approximately 20-25 ml in a normal adult. The removal of the first upper incisor became completely healed and its color was covered and there was no complaint from the patient.

Clinical results in G1

During the immediate post operative period, all patients were complaining of pain and burning sensation with discomfort during chewing and swallowing. The ear postoperative period started directly after the end of the operation till the end of the first week. All patients showed slight bleeding in the early post operative few hours. The late observation period extended for three months. By the end of the second month the flap was healed and the raw area was covered and there was no complaint from the patient.

Clinical results in G2

During the immediate post operative period there was no bleeding at all, no discomfort during eating, which might be present due to the absence of bulky palatal soft tissue mass, no raw area, and no burning sensation.

The late observation period showed that the fistula was completely closed in all the patients at the time of suture removal. The edges of the flap were healed, and the granulation tissue changed into a firmer granulation tissue in the second week and it became completely epithelialized, with slight contraction and shrinkage. By the end of the third week the submucosal layer became completely healed and its color

Materials and Methods

Ten patients suffering from OAF were recruited in the study. They were collected from the private clinic of Oral surgery and were divided into two groups, G1 and G2. Each group contained five patients. The first group was treated with the conventional pedicled palatal flap technique, and the second group was treated with the submucosal connective tissue flap technique. A comprehensive history was collected from the patients considering the cause and onset of OAF, and about the duration of the condition. The clinical examination of the patients included the observation of remarkable features such as: regurgitation of liquids from the mouth into the nose, which is the most common complaint, unilateral epistaxis, alteration in the resonance of the voice, inability to blow-out the cheek, difficulty in smoking, and/or foul or salty unpleasant taste. The late observation period extended for three months. By the end of the second month the flap was healed and the raw area was covered and there was no complaint from the patient.

Clinical results in G1

During the immediate post operative period, all patients were complaining of pain and burning sensation with discomfort during chewing and swallowing. The early postoperative period started directly after the end of the operation till the end of the first week. All patients showed slight bleeding in the early post operative few hours. The late observation period extended for three months. By the end of the second month the flap was healed and the raw area was covered and there was no complaint from the patient.

Clinical results in G2

During the immediate post operative period there was no bleeding at all, no discomfort during eating, which might be present due to the absence of bulky palatal soft tissue mass, no raw area, and no burning sensation.

The late observation period showed that the fistula was completely closed in all the patients at the time of suture removal. The edges of the flap were healed, and the granulation tissue changed into a firmer granulation tissue in the second week and it became completely epithelialized, with slight contraction and shrinkage. By the end of the third week the submucosal layer became completely healed and its color

Antibiotics were also prescribed to avoid infection for 5-7 days, and analgesics to relieve pain. Decompress nasal drops and inhalants to shrink the nasal mucosa and promote healing were advised, as well as normal saline mouth washes after 24 hour post-operatively. Sutures were removed after 10-12 days post-operatively. Immediate evaluation of the surgical procedure and consequences was done at the day of the operation after complete recovery and then one day after the operation through clinical objective findings including: 1) Bleeding (ranging from no bleeding to active bleeding), and 2) Pain, could be evaluated by the amount of analgesics consumed per day.

Late post-operative evaluation was conducted in the follow-up once a week up to 4 weeks. The evaluation included healing, the color of the flap, texture of the tissue, integrity of the suture line, signs of flap epithelialization, infection, pain, headache, numbness of the operated area, fistulae recurrence (if recurrence occurred, it would appear at the time of suture removal and not later), posterior nasal discharge and/or maxillary sinusitis, chewing and swallowing difficulties, and speech problems.

Results

An OAF usually needs 7 days to epithelize and become a chronic fistulous tract. Long term successful closure of OAF depends on the technique used, the size and the location of the defect. Many surgical procedures have been used for the treatment of OAF such as: Buccal flaps, Pedicle tongue flap, Combined buccal and reverse palatal flap, Pedicle buccal fat pad graft, Palatal pedicle flaps. Several materials can also be used to enhance a successful closure under the flap like bone or cartilaginous grafts, gold foil, and biodegradable ceramics. The optimal operative procedure to accomplish closure of OAF ought to fulfill the following requirements:

1) Be applicable in most cases
2) Have minimal incidence of failure
3) Be relatively simple
4) Does not require removal of additional tissues

The most common flaps used in the closure of OAF are the buccal flaps and the palatal flap with its modifications. Buccal flaps are successfully used in the closure of OAF. Care must be taken to avoid injury to the parotid papilla or duct. Although the buccal flap is technically a simple procedure, yet it has the following disadvantages: 1) it is thin, 2) there is tendancy to obliterate the muco-buccal fold, and 3) it is unstable due to cheek movements. The palatal flap with its modifications results in successful closure of the fistula. The palatal mucosa is much thicker and firmer than the buccal mucosa or cheek, and a flap can be designed that is well nourished by the blood vessels emerging from the anterior palate fornix (greater palatine artery). Pedicled palatal flap closes the OAF without reduction in the depth of the buccal vestibule. However, rotation of the palate mucoperiosteum flap leaves a raw area on the palate until secondary epithelization occurs and a budge of soft tissue is created at the axis of rotation. In trials to overcome these problems, submucosal connective tissue palatal flap technique was used successfully and provided mucosal flap to cover the raw area. The aim of this study is to evaluate the success of the submucosal connective tissue palatal flap compared to the conventional pedicled palatal flap in the closure of OAF.
started to return to the normal color of the mucosa.

Final general results
It has been shown that all fistulae were closed successfully in both groups. There was no discomfort and no burning sensation in G2. They all showed relatively fast healing. Interestingly, patients in G2 needed fewer amounts of analgesics than in G1 (Figures 5 and 6).

Discussion
The oroantral communication is a rather frequent complication of oral surgery in the maxilla. Most of these complications can be treated adequately at the time of occurrence. However, some of them become chronic over time. Killey and Kay (1967) analyzed 250 cases of molar. They found that 50% of the cases occurred due to extraction of upper right third molar, and one case of maxillary sinus. Such openings are difficult to be closed surgically.

In our study, cases of oroantral communication had developed as complications after tooth extraction with a percentage of 80% of the communications resulted after removal of the upper first molar; four cases due to extraction of upper right first molars, one case due to extraction of upper right third molar, and one case due to extraction of upper right second premolar.

Killey and Kay (1967) analyzed 250 cases of OAF. They found that 50% of the cases occurred after the removal of the upper first molar.

Hirata et al. (2001) mentioned that the perforation rate occurred most often after extraction of upper first molars, four cases due to extraction of upper left first molars, one case due to extraction of upper right third molar, and one case due to extraction of upper right second premolar.

In our study, male to female ratio was 1:1, and the age range of the patients was between 25 and 59 years with an average of 40 years.

It seems to be that the incidence of OAF is more frequent in elderly patients. Pumwotikorn et al. (1994) noted that the elder the patient, the higher the chance of having OAF. Most of them share an equal degree of success and failures.

A modified palatal flap technique has been introduced and successfully used in eight patients for closure of OAF. Successful closure of OAF is dependent upon the following principles:

- Control of maxillary sinus infection.
- Removal of as much of the epithelial lining of the fistula as possible, making sure that there is a raw surface throughout the periphery of the wound.
- Maintenance of adequate blood supply to palatal pedicle flap with minimum tension on the flap.
- Cessation of minimal trauma to the pedicle flap, and the tissue around the OAF.
- Use of a nasal antrostomy, with or without a Caldwell-Luc procedure, to ensure adequate sinus drainage.

Gordon and Brown (1992) mentioned that the treatment of OAF was considered suc-

Every day protection from everyday acids

Modern eating and drinking habits increase the exposure of tooth enamel to dietary acid that can lead to Acid Wear (erosive tooth wear), the biggest contributor to tooth wear. In the early stages of Acid Wear, a patient's enamel can become translucent, anatomical features can be lost and molar cupping can occur.

CSK collaborated with leading experts in the field to develop Pronamel Daily Toothpaste to help protect patients at risk of Acid Wear. With its optimised formulation, Pronamel is proven in a range of clinical in situ and in vivo studies to reharden acid-sensitized enamel and protect against future acid challenges.

Not all toothpastes are the same

In laboratory experiments Pronamel's optimised formulation ensures more fluoride is available at the patient's tooth surface to protect from the effects of acid challenges. Other toothpastes with the same marked fluoride levels.

<table>
<thead>
<tr>
<th>Toothpaste</th>
<th>Mean percentage surface microhardness recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronamel (1500ppm NaF)</td>
<td>30.1</td>
</tr>
<tr>
<td>A leading toothpaste (1500ppm NaF)</td>
<td>27.6</td>
</tr>
<tr>
<td>Placebo (10ppm F)</td>
<td>15.7</td>
</tr>
</tbody>
</table>

Figure 1: GDMS imagery to show amount of fluoride at the tooth's surface in situ.

Modern eating and drinking habits increase the exposure of tooth enamel to dietary acid that can lead to Acid Wear (erosive tooth wear). In the early stages of Acid Wear, a patient's enamel can become translucent, anatomical features can be lost and molar cupping can occur. CSK collaborated with leading experts in the field to develop Pronamel Daily Toothpaste to help protect patients at risk of Acid Wear. With its optimised formulation, Pronamel is proven in a range of clinical in situ and in vivo studies to reharden acid-sensitized enamel and protect against future acid challenges.

In laboratory experiments Pronamel’s optimised formulation ensures more fluoride is available at the patient’s tooth surface to protect from the effects of acid challenges. Not all toothpastes are the same.
Successful when primary healing had occurred at the time of suture removal.

In our study, ten cases of OAF were treated with two different types of palatal flaps, all fistulas had successfully closed without recurrence, primary healing had occurred at the time of suture removal. In all of the cases, neither nasal antrostomy, nor Caldwell-Luc procedure was used. Adequate sinus cleansing was performed by applying irrigation with antibiotics for at least five days, accompanied by vasoconstrictive nasal drops after complete excision of the epithelial lining of the fistula track through the bone defect toward the maxillary sinus, and removal of all pathologically-changed maxillary sinus mucosal tissues.

Further support to our technique was given by Car and Juretic (1998) who achieved successful closure in 38 cases of chronic by applying irrigation with antibiotics for at least five days, accompanied by vasoconstrictive nasal drops after complete excision of the epithelial lining of the fistula track through the bone defect toward the maxillary sinus, and removal of all pathologically-changed maxillary sinus mucosal tissues.

Further support to our technique was given by Car and Juretic (1998) who achieved successful closure in 38 cases of chronically changed maxillary sinus mucosal tissues. Various palatal flap techniques based on the position of the greater palatine vessels have been advocated. These can be divided into advancement flaps and rotation advancement flaps. Straight advancement flaps do not offer great mobility for later coverage.

Palatal rotation advancement flaps require mobilization of large amounts of palatal tissue because of the inelasticity of the tissue. This flap also has the disadvantage of tissue bunching at the base and causing a large area of palatal bone to be exposed.

This was further proven by results of our study, since all the patients of G1, who were treated with the palatal rotation advancement flap, had discomfort during swallowing and talking due to the presence of soft tissue bulge in the palate, and burning sensation from the raw bone area until complete epithelization. However, all of the patients in this group showed successful closure.

Herbert (1974) pointed out that for a large fistula, when local tissue is unavailable, palatal tissue-dependent flap is the method of choice. The palatal technique results in successful closure of the fistula with maintenance of an adequate blood supply without reduction in the depth of the buccal maxillary vestibule.

Anavi et al. (2003) gave further support for the palatal rotation full thickness flap. They concluded that the palatal rotation advancement flap is recommended for the late repair of OAF owing to its good vascularization, excellent thickness and easy accessibility. It also allows the maintenance of the vestibular depth, and is particularly indicated in cases of unsuccessful buccal flap closure.

Gullane and Arena (1998) provided the main advantages of the palatal mucoperosteal flap including a local tissue with good blood supply, excellent mobility, limited impairment of speech and a success rate of 95/100. These advantages compensate for the relatively prolonged period required for epithelization of the donor site over the hard palate.

This was supported by our clinical observation among the patients of G2, since all of them showed excellent closure of the fistula without any palatal soft tissue bulge. The connective tissue flap was extremely elastic, enabling it to be rotated without tension. Another advantage is that the epithelial layer of the flap was returned to its original place to cover the donor area. This technique offered the patients minimal discomfort and also provided early healing of the wound, as there was no raw area left behind for granulation.

After healing, the palatal mucosa and the recipient site were smooth without a hole or bulge.

All our cases were observed periodically and didn’t reveal sinusitis after the surgical closure.

Conclusion
According to the results of our observation, the following points could be concluded:

1. Both types of palatal flaps (conventional pedicle palatal flap and submucosal connective tissue palatal flap) provided enough well-nourished tissue for sufficient and successful closure of OAF (chronic or acute, large or small).

2. Nasoantrostomy is unnecessary in the closure of orontal communications.

3. Preoperative preparation with antibiotics and good sinus irrigation is mandatory.

4. Submucosal connective tissue palatal flap seems to be preferable for fistula closure because it overcomes the disadvantages of the full thickness palatal flap (e.g. creation of soft tissue bulge and production of raw surface on the hard palate).

5. Connective tissue palatal flap offered the patients minimal discomfort, provided early healing of the wound, and did not create esthetic disturbance due to absence of the palatal raw area or any soft tissue bulge. Surgical splints or dressing were not necessary.

6. Due to the advantages of the connective tissue palatal flap, we believe that it is the safest procedure for the closure of OAF. However, compared with the conventional palatal flap, submucosal connective tissue palatal flap technique may appear to be more difficult in terms of flap manipulation. The surgical placement plays an important role at this level.

Reference is available upon request. Please contact deyanov@dental-tribune.com

Contact Information
Dr. Feras Yabroudi, B.D.S, M.Sc, Ph.D., Oral and Maxillofacial Surgeon, Assistant Professor Department of Oral & Maxillofacial Surgery, Nicolas & Asp University College, Dubai Healthcare City, Dubai, UAE.

e-mail: drferasyabroudi@gmail.com
Dubai School of Dental Medicine announces collaboration with The Royal College of Surgeons of Edinburgh

Press Release: DSDM

Dubai, UAE: The Dubai School of Dental Medicine (DSDM) enrolled its first batch of students in January 2013 and announced its collaboration with the prestigious UK Royal college at the recent AEEDC. We spoke to Professor Wray about the significance of this collaboration and how the first intake of students are settling in to the new facility…

We are extremely proud to announce the collaboration with The Royal College of Surgeons of Edinburgh and the opportunity this gives us. When our students embark on a three year intensive clinical training programme at DSDM, the course has a clear didactic component and a research dissertation. Students have the option to study abroad, for the first time in the region. The Royal College of Surgeons of Edinburgh represents the global benchmark in specialist dental training and is one of the most sought after medical training programmes at DSDM. The world class faculty have endorsed our programme to offer a fellowship to students passing exams outside of their faculty, for the first time in the region. Moving forward we look forward to welcoming students from the UAE, the wider GCC and around the World.

Our students are taught by an international faculty in a state-of-the-art dental school, based in Dubai Healthcare City. Our faculty specialists are highly qualified with extensive experience in dental education, research and clinical practice. They have trained in renowned institutions and are committed to bringing students and patients the most advanced dental treatment based on scientific evidence. Our first batch of students hail from across the GCC and we are keen to support Dubai Healthcare City’s ambition to build a specialist medical talent pool in the region.

Why did you select DSDM?

I chose to study my Postgraduate Degree in Paediatric Dentistry at DSDM as the school is well-structured and is an integral part of Mohammed Bin Rashid Al Maktoum’s Academic Medical Centre in Dubai Healthcare City. Providing us as students the opportunity to sit for The Royal College of Surgeons of Edinburgh dental specialty examination as a graduation requirement is a great academic achievement and reflects the school’s vision in providing its residents with high standards of qualification. What are your hopes for your dental career: Improving the quality of oral health care provided to paediatric patients by the Ministry of Health and giving more attention to medically compromised patients and patients with special needs. I also want to become involved in research programmes offered by DSDM and other academic institutions within Dubai Healthcare City. This is something that has been lacking in the past within the field of dentistry in the UAE.

Student perspective:

Name: Eman Hassan Al Nuaimi

Nationality: UAE

Undergraduate School: Ajman University of Science & Technology

Accredited programme: Paediatric Dentistry

We are extremely proud to be offering our growth and development programme to the students who graduated from DSDM and did you have enough information from the start? Very much so! Professor Wray explained the ideas behind the DSDM extensively and I was answered.

Why is it so attractive to have such a school here in UAE? Firstly, not leaving your home country, this is the main argument. Another thing is that it follows the requirements it sets out, you know exactly what it wants from you, when you are going to practice dentistry and you know exactly what to go for. How well were you informed about the DSDM? And did you have enough information from the start? Very much so! Professor Wray explained the ideas behind the DSDM extensively and how the programs will be, all my questions were answered.

Personally speaking, are you happy with studying in the UAE or would you rather go abroad? We are satisfied with what we have here in the UAE, if we had the chance to study abroad, we would but we are satisfied with what we have and where we are. If I did have the opportunity to go abroad I would probably have studied either in Ireland or United States of America.

The DSDM Open Day Review:

Dr. Najat Abdulla Saeed Mohammed Al-Hasani, potential student

Dubai, UAE: What do you think about the school at this early stage? It is quite interesting actually. It is the first postgraduate dental school in the UAE and it covers almost all of the departments of dentistry. Within the UK. This prestigious institution has influence which extends to the Middle East, the Far East & Australasia. The academic and clinical training provided to our students will groom them to become independent specialist practitioners of the future. Dubai School of Dental Medicine will set the standard of excellence and become recognised as a leader in dental education, research and clinical practice by providing internationally recognised student-centred dental education programmes that combine advanced didactic, clinical and research training designed to prepare the candidate for a career at the specialist level.

The inaugural academic year at DSDM is an exciting time for everyone involved. Our first batch of students, who started in January, are a group of gifted, motivated young dentists with a clear focus on obtaining specialist clinical and academic qualifications. The school prides itself on a philosophy of lifelong learning and innovation in a patient-centered environment. We will graduate up to 35 dental specialists every year from our endodontics, oral surgery, orthodontics paediatric dentistry, prosthodontics and periodontics accredited programmes.